高斯消元法、组合数学、卡特兰数
高斯消元法:
循环下列过程:
- 找到当前列绝对值最大的一行
- 将最大行换到最上面去
- 将最大行第一个数变为 1
- 将下面所有行对应的数变为 0
#include <iostream>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
const int N = 110;
const double eps = 1e-8;
int n;
double a[N][N];
void out(){
for(int i = 0; i < n; i ++){
for(int j = 0; j < n; j ++){
cout << a[i][j] << " ";
}
cout << endl;
}
cout << endl;
}
int gauss(){ // 高斯消元,答案存于a[i][n]中,0 <= i < n
int c, r;
for (c = 0, r = 0; c < n; c ++ ){
int t = r;
for (int i = r; i < n; i ++ ) // 找绝对值最大的行
if (fabs(a[i][c]) > fabs(a[t][c]))
t = i;
if (fabs(a[t][c]) < eps) continue; // 当前列全为0
for (int i = c; i <= n; i ++ ) swap(a[t][i], a[r][i]); // 将绝对值最大的行换到最顶端
for (int i = n; i >= c; i -- ) a[r][i] /= a[r][c]; // 将当前行的首位变成1
for (int i = r + 1; i < n; i ++ ) // 用当前行将下面所有行的当前列消成0
if (fabs(a[i][c]) > eps)
for (int j = n; j >= c; j -- ) // 行首是倍数,所以倒着来
a[i][j] -= a[r][j] * a[i][c];
// out();
r ++ ;
}
if (r < n){
for (int i = r; i < n; i ++ )
if (fabs(a[i][n]) > eps)
return 2; // 无解
return 1; // 有无穷多组解
}
for (int i = n - 1; i >= 0; i -- )
for (int j = i + 1; j < n; j ++ )// 求解第 i 个解需要用到第 j 个解和 a[i][j]
a[i][n] -= a[i][j] * a[j][n];
return 0; // 有唯一解
}
int main()
{
cin >> n;
for (int i = 0; i < n; i ++ )
for (int j = 0; j < n + 1; j ++ )
cin >> a[i][j];
int t = gauss();
if(t == 0){
for (int i = 0; i < n; i ++ ){
if (fabs(a[i][n]) < eps) a[i][n] = 0; // 去掉输出 -0.00 的情况
printf("%.2f\n", a[i][n]);
}
}
else if (t == 1) puts("Infinite group solutions");
else puts("No solution");
return 0;
}
组合计数:
// 预处理出 C(a, b) O(n^2)
#include <iostream>
using namespace std;
const int N = 2010, mod = 1e9 + 7;
int c[N][N];
void init(){
for(int i = 0; i < N; i ++)
for(int j = 0; j <= i; j ++)
if(j == 0) c[i][j] = 1;
else c[i][j] = (c[i-1][j] + c[i-1][j-1]) % mod;
}
int main(){
init();
int n; cin >> n;
while(n --){
int a, b; cin >> a >> b;
cout << c[a][b] << endl;
}
}
预处理阶乘: , ,
逆元的递推关系:
// 另一种预处理,更大范围 O(n log n)
#include <iostream>
using namespace std;
using ll = long long;
const int N = 100010, mod = 1e9 + 7;
int fact[N], infact[N];
int qmi(int a, int k, int p){
int res = 1;
while(k){
if(k & 1) res = (ll) res * a % p;
k >>= 1;
a = (ll)a * a % p;
}
return res;
}
int main(){
fact[0] = infact[0] = 1;
for(int i = 1; i < N; i ++){
fact[i] = (ll) fact[i - 1] * i % mod;
infact[i] = (ll) infact[i - 1] * qmi(i, mod - 2, mod) % mod;
}
int n; cin >> n;
while(n --){
int a, b; cin >> a >> b;
cout << (ll)fact[a] * infact[b] % mod * infact[a - b] % mod << endl;
// cout << (ll)(fact[a] * infact[b]) % mod * infact[a - b] % mod << endl;
// 错,不能加括号,会先溢出而不是先类型转换
}
}
Lucas 定理:
// 更大大的范围
#include <iostream>
#include <algorithm>
using namespace std;
using ll = long long;
int p;
int qmi(int a, int k){
int res = 1;
while(k){
if(k & 1) res = (ll) res * a % p;
k >>= 1;
a = (ll)a * a % p;
}
return res;
}
int C(int a, int b){
int res = 1;
for(int i = 1, j = a; i <= b; i ++, j --){
res = (ll)res * j % p;
res = (ll)res * qmi(i, p - 2) % p;
}
return res;
}
int lucas(ll a, ll b){
if(a < p && b < p) return C(a, b);
return (ll) C(a % p, b % p) * lucas(a / p, b / p) % p;
}
int main(){
int n; cin >> n;
while(n --){
ll a, b; cin >> a >> b >> p;
cout << lucas(a, b) << endl;
}
}
中质因子 的个数:
// 不带模,算精确结果,需要高精度
#pragma GCC optimize(2) // O2 优化
#include <iostream>
#include <vector>
using namespace std;
const int N = 5010;
int primes[N], cnt;
int sum[N]; // sum[i] 表示质因子primes[i]的个数
int st[N];
void get_primes(int n){
for(int i = 2; i <= n; i ++){
if(!st[i]) primes[cnt ++] = i;
for(int j = 0; primes[j] <= n / i; j ++){
st[primes[j] * i] = 1;
if(i % primes[j] == 0) break;
}
}
}
int get(int n, int p){
int res = 0;
while(n){
res += n / p;
n /= p;
}
return res;
}
vector<int>mul(vector<int>&A, int B){
vector<int>C;
int t=0;// 上一位进位
for(int i=0; i<A.size()||t; i++){
if(i < A.size()) t += A[i] * B;
C.push_back(t%10);
t /= 10; //上一位进位
} // 去掉前导0, 1234 x 0 = 0000
while(C.size()>1 && C.back()==0) C.pop_back();
return C;
}
int main(){
int a, b; cin >> a >> b;
get_primes(a);
for(int i = 0; i < cnt; i ++){
int p = primes[i];
sum[i] = get(a, p) - get(b, p) - get(a - b, p);
}
vector<int> res;
res.push_back(1);
for(int i = 0; i < cnt; i ++)
for(int j = 0; j < sum[i]; j ++)
res = mul(res, primes[i]);
for(int i = res.size() - 1; i >= 0; i --) cout << res[i];
}
卡特兰数:
#include <iostream>
using namespace std;
using ll = long long;
const int mod = 1e9 + 7;
int qmi(int a, int k, int p){
int res = 1;
while(k){
if(k & 1) res = (ll) res * a % p;
k >>= 1;
a = (ll)a * a % p;
}
return res;
}
int main(){
int n; cin >> n;
int a = 2 * n, b = n;
int res = 1;
for(int i = a; i > a - b; i --) res = (ll)res * i % mod;
for(int i = 1; i <= b; i ++) res = (ll) res * qmi(i, mod - 2, mod) % mod;
res = (ll)res * qmi(n + 1, mod - 2, mod) % mod;
cout << res;
}
Q.E.D.